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Analytic Ray Tracing Using Ermakov Invariants

1. INTRODUCTION

The impetus for developing a computational technique capable of rapidly producing ray

traces and ionograms came from the requirements of an experiment designed to measure HF

propagation in the ionospheric E-F 2 duct in situ. In the experiment, a receiver placed on a

polar orbiting satellite is to detect 6-30 MHz signals injected into the duct either by means of

naturally occurring ionospheric gradients or by scattering from an artificially heated

ionospheric volume. Since a time delay vs frequency ionogram will change depending on

position In the orbit, a capability for producing essentially real-time lonograms is needed to

direct the experiment efficiently.

Programs exist that can numerically integrate the differential equations of motion (such
as the Haselgrove Hamiltonian equations) that describe a propagating ray. I Depending on the

path length. the time required to produce an tonogram on a mainframe computer can run from
20-200 minutes. The time required to evaluate an Ionogram using the analysis to follow will

require less than 100 seconds and can be run on small computers.

(Received for Publication 14 Nov. 1989)

1 Jones. R.M., Stephenson. J.J. (1975) A Versatile Three-Dimensional Ray Tracing Computer
Program for Radio Waves in the Ionosphere. U.S. OT Report. 75-76.
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The method developed here starts from a description of propagating HF waves by the scalar

wave equation in the paraxial approximation, which is valid if changes in the ionosphere are

small over distances on the order of a wavelength (X - 10-50m). By redefining z, the distance

along the great circle path as a time coordinate, the paraxial equation can be cast In the form

of the time dependent Schroedinger equation.

The time dependent Schroedinger equation has recently been shown to be soluble for a

certain class of potentials by Ermakov invariant theory. 2 This class consists of potentials

obtained by canonical transformations that are parametrized by functions that obey a set of

time-dependent differential constraints. By approximating a path-dependent ionospheric

potential. such that it satisfies these constraints, exact time-dependent scalar wave solutions

to the approximating ionospheric potential may be obtained.

Since it is difficult to find soluble double-well potentials that can approximate the

ionosphere over extended ranges, as a practical matter it is necessary to Join two (or more)

single-well potentials at a common boundary to model the total ionospheric potential. A

consistent calculation can then be made in the ray approximation, which corresponds to

solving Newton's equations of motion for a particle in a time-dependent one-dimensional

potential well. By approximating the ionospheric potential along a great circle path by Joined

single-well potentials, such that each satisfies the differential constraints of Ermakov theory.

the solution to the ray tracing problem is mapped onto the problem of solving for the

equations of motion of a particle in a static potential.
By choosing the fitting potenlal to be a combination of Morse and linear potentials or

quadratic and linear potentials or any potential with known solutions that when shifted and

scaled conforms to the ionospheric potential over the chosen range. a good approximation for

the entire ray tracing problem may thus be obtained analytically. The approximations that

inhere in this method of tracing rays in a model ionosphere enter through the choice of the

fitting potential, the paraxial approximation, and the fact that the differential constraint
equations are only approximately obeyed.

The outline of this report is as follows: In Section 2 we Indicate how the paraxial

approximation to the scalar wave equation may be viewed as a time-dependent Schroedinger

equation. The use of Ermakov invariant theory for solving the time-dependent Schroedinger

equation Is then outlined. In Section 3 we discuss how the application of the time-dependent

Schroedinger formalism may be applied to the ionospheric ray tracing problem by using

Morse and linear potentials to fit the ionosphere. The possibility of using double-well

potentials obtained through the Darboux transformation is also discussed. In Section 4 we

discuss the relation of coherent states of the time-dependent Schroedinger equation and rays

for the Morse potential. The possibility of multiple focusing of rays is pointed out. This

behavior is analogous to convergence zones in the case of ocean acoustic ducts and provides an

explanation for both cases. In Section 5 we discuss ray tracing in the potential wells provided

2 Ray, J.R. (1982) Exact Solutions to the Time-Dependent Schroedinger Equation, Phys.
Rev.. A26:729/Hartley, J.G., Ray. J.R. (1981) Ermakov Systems and Quantum-Mechanical
Superposition Laws. Phys. Rev..A24:2873.
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directly by IONCAP. 3 Examples of ray traces and lonograns calculated both by the Jones-
Stephenson ray tracing program using IONCAP and by the present method are given.

2. RAY TRACING AND THE TIME-DEPENDENT SCHROEDINGER EQUATION

Our description of ionospheric HF propagation starts from the scalar wave equation for
a transverse electric field component. For propagation along a great circle path this can be
written as

2 2p

d2E + . dE+ 1 E-+k2n2(r.)E(r. ) =0(
dr2 r ar r 2 d 2  0 (I

with k. .
0c

Assuming a solution of the form

E(r.40) - E(r,*) e . (2)

This can be written as

S2-2

d E 1 2 1E E E +k 2 n2(r.#)E(r , # )= 0 .
jr2 r ar r2 a*2  r 2  0 (3

In terms of the coordinates for height x above the Earth's surface x = r - Ro where Ro is the

Earth's radius, and range z along the great circle path at the Earth's surface z = Ro*. this can be

rewritten as

z Lloyd. J.L.. Haydon. G.W.. Lucas. D.L.. and Teters. L.R. (1984) Estimating the Performance
of Telecommunications Systems Using the Ionospheric Transmission Channel. Vol. 1.
Techniques for Analyzing Ionospheric Effects Upon HF Systems. NTIA/ITS.
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2 2 2 2
1 E 210k 0  oE (4k)E  2a2ER_ + x) 2E_ + 2E (+) +) nE (4)

x2 (Ro+x)cx (1 +x/Ro) 2 a 3  (I+X/Ro) 2 az (I+x/R) 2  0

where the angular momentum f has been re-expressed as

P= hlko R0 . (5)

Since derivatives in height occur on a scale of tens of km. the term tiiay be
(R0 +x) ox

42E
neglected in comparison with the term - . If we assume that changes in n (x.z) (and E (x.z)j

occur on a scale much larger than the wavelength X (- 2 n/ko) of the propagating wave, then we

may neglect terms operated on by a/oz in comparison to those multiplied by I Oko. Expanding

the remaining terms to lowest order in x/Ro yields the approximate wave equation

-1 -pa - I e [ n (. ) 2x ep21 XZ
k o az 2k2 x-- 2 R 0  (6)

00

which is in the form of the time-dependent Schroedinger equation with k o replacing Ii, zifi

replacing the time variable r, and with the time-dependent potential V, (x.¢) given by

n 2 21 

(71

__x,) __ - 0 - I (7)

For the ionosphere, the dielectric constant Is given by

2
n2 (xz) - e (x,z) P(xz)

n 2 (8)

4
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where vp (xz) is the local plasma frequency and v Is the wave frequency. Methods have been
developed within the past few years for dealing with time-dependent Hamiltonlans by using
the method of Ermakov nvarlants 2 or equivalently by a rescaling of space and time variables
In conjunction with a unitary transformation of the wave function. 2 .4 The most general
potential that can be dealt with by these methods must be expressible in the form

VE (X, ) = v I (X - / ( p ()] p 2 () + + X2 * g 2 ( ) "  (9)

Where the scaling function p(r) and shift function a(r) must obey the differential constraint
conditions

P('r) + 2g 2 (1)P(t) K I/P 3C) (10)

(,c) + 2 g 2 (r)o(r) + g(r)-0 (11)

with K an arbitrary constant and with go. g1 . and g2 arbitrary functions of time.
The equations of motion for a ray (or a classical particle) equivalent to the wave Eq. (6)

with a potential given by Eq. (9) are

d2x

d_ _ 2 g2Xx d v ( )_ , 1
d ?d P3() (12)

The Ermakov invariant for this system Is given by

- [(* - o) P- P (X - 0)]2 + v ((x - o)/p). (13)
2

4 Lewis. H.R.. and Leach, P.G.L. (1982) Exact Invarlants for Time-Dependent Nonlinear
Hamiltonlan Systems. Nonlinear Problems: Present and Future. Bishop. A.R., Campbell. D.K..
and Nlcolaenko. B. (eds) p. 133. North Holland.
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If x and t are transformed as

x- a_(_ ) (14)

and

SJo dr" (15)Jo 2 ")

the equations of motion and Ermakov invariant are transformed to

d 2x , dv(x')d___ = - (16)

dt"2  dx'

and

2

dx') + I Kxx2+v(x ' ) (17)

respectively.

We will call the Ix','} coordinate system the local frame and Ix,,r the global frame. From

the equation of motion for x' given by Eq. (16). it can be seen that in the local frame (for the

case u = 0) the scalar, linear, and quadratic portions of the potential proportional to g,. g2 . and

g3 drop out and that only the potential v (x'). which can be thought of as being centered about

the time varying position of its minimum XA, = a (r). affects the particle motion. The local

coordinate x' is thus simply related to the original global coordinate x by a time varying shift

( (T) (which locates a potential extremum or minimum) and a time varying scale factor p (r).

The expression for the Ermakov invariant in terms of local variables given by Eq. (17)

appears in the form of a total (local) energy that is conserved. It should not be confused with

the total energy of the system given by

6



2

which Is time varying.

For the wave equaUon the Ermakov invariant becomes an operator with the replacements

-x_+p=i a
dx- p= x(19)

dT ax

and

dx" -x- 
(20)

The respective invariants

I' =_L + IKX 2+V(X ' )

op 2 ax,2 2 (21)

and

2

l [(PP 6 0-°I ( -(I (22)

are related by a unitary transformation 2

I -e 1 !b' • -1  (23)
OP OP

where

7



- OX + x -ox. (24)

By using the constraint Eqs. (10) and (11). it can be shown that both lop and I are truly
invariant, that is,

dt op t I top

and

d I= 0. (26)
dt

3. A MORSE POTENTIAL MODEL FOR THE E-F LAYER TROUGH

In order to apply Ermakov invariant theory to the ionospheric ray tracing problem. the

ionospheric potential function V1 (xx) given by Eq. (7) must be cast into the form of the time

dependent function VE (x,c) given by Eq. (9). Neglecting for the moment the presence of an F1

layer, an effective Ionospheric potential will resemble the double-well potential VcH (x.,)
shown in Figure 1 that was formed by superposing E and F2 layers approximated by the

Chapman function

1/2(1 - x - e-')fcHX= e .(27)

8



VCH Wx

-0.400 -

-0.425- __ __

CHAPMAN
F2 LAYER

-0.450 -___ ______ ______

-0.475 -______

0 100 200 300 X

HEIGHT (KM)

Figure 1. Plot of the Effective Ionospheric Potential
VcHi (x) as a Function of Height x.

In terms of the layer half-widths ye (z), yf (z) heights x,, (z). xf (z) and frequencies Ue (z). Uf (z
(provided by IONCAP)3 this effective Ionospheric potential including the curvature term is
written as

2 2

HI, +xT - ! (28)

Finding a potential function approimating Vc~ (x.T) with known analytic solutions and
separately adjustable well parameters would seem to be a remote possibility. If the
requirement of separately adjustable well parameters Is relaxed, it is, however, quite possible

9



that very good approximations to the potential of Figure I could be found by employing the
Darboux transformation. 5 The effect of the Darboux transformation given by

2
(X) f(X) (x) (29)

(x) =dt dto t(x) (30)
dx dx 00(x)

Is to transform a single-well potential V (x) with known solution + (x) into a generally non-

symmetric double-well potential V with solution y. By its construction, however, the
Darboux transform does not allow either well to vary Independently of the other, thus limiting
Its usefulness for Ionospheric ray tracing where the ground-E layer and E-F2 layer potential
wells do vary independently.

In order to insure independent variation of the potential wells (brought about by the
Independent variation of the constitutive Ionospheric layers). It is thus necessary to piece
together truncated wells or layers along common boundaries. In this section we will look at
an example of approximating the Ionospheric potential by piecing together two potential wells
truncated at xe. the position of the E-layer peak: while in Section 5 we discuss approximating
the ionospheric potential by piecing together either inverted Morse potentials or parabolic
layers connnected by straight line segments.

While piecing together two truncated potentials leads to difficulties In generating solutions
to the wave (Eq. (6)1 for states near the top of the barrier separating the two wells due to

tunneling and mixing, these difficulties do not exist for solutions to the equation of motion
[Eq. (12)] describing ray trajectories.

The steps for Ionospheric ray tracing employing the results of Ermakov invariant theory
for potential wells formed by joining together separate soluble sectors are the following:

1) Choose a form VE (x.,') (Eq. (9)1 that can closely approximate the ionospheric potential
V (x.T) [Eq. (7)1 over Its entire range by varying the scale, shift and level functions p (t), a ft),
and go (t) appropriate to each sector with g, () , and g2 (. set to zero.

2) On the scale of a wavelength of the propagating wave, 6 and p are assumed to be
negligible. For a given great circle path p (rt, o ft). and go (c) appropriate to each sector can thus

be approximated by fitting VE (x,-) to V (x.,) for each range point t.
3) Launching a ray at some point (x.ro) in VE (x.-} at a given Incidence angle and frequency

determines the Ermakov invariant I for that potential sector and. assuming the solution to the

5 Zheng, W.M. (1984) The Darboux Tranformation and Solvable Double-Well Potential
Models for Schroedinger Equations, J. Math. Phys.. 25:88.
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equation of moUon [Eq. (16)1 (with K = 0) is known, the ray path is determined up to the point

where the ray crosses a boundary into another sector of the potential.

4) At a boundary crossing using the known x. i. a. p. 6. and p. the Ermakov invariant is

calculated for the new sector of the potential and motion in this sector is determined as in

step 3. Any rays that hit the ground at x = 0 are assumed to be perfectly reflected.

5) The final ray path x (,). is found by inverting Eqs. (14) and (15) and piecing the ray

paths in the various sectors together.

Instead of treating the entire ionospheric potential at once. we shall first focus on the

potential well formed by the E and F2 layers and the propagation of rays in this E-F 2 duct.

From the graph of VCH (x,zj in Figure 1 it can be seen that the E-F 2 potential is asymmetric.

with a slope that is steeper above the minimum than below it. A soluble potential that can be

adjusted to fit the E-F 2 is the Morse potential given by

2
VM (x') = 2 (ex'- ) (31)

and plotted in Figure 2.

11



V M Wx

y 2 I ------

x=O

Figure 2. Plot of the Morse Potential Vm Wx =y (emx - 1)2
as aFunction of Heightx with y2 - 1 and ax 1.

For E' < y2 the solution for ray paths are givenby

e a'=xC -A (E') cs(a), (E') C')(2

where

X OWy / - E') (33)

6 Nieto. M.M.. Simmons. L.M. (1979) Coherent States for General Potentials I11. Non-
confining One-Dimensional Examples. Pttys. Rev. D. 20:1342.
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A (E') • E')'/2/( - E') (34)

and

eOC (E')=[2a2 ( 2 E'). (35)

For E' > y2 the solutions are given by the same expression with b = c0 I replacing c and
cosh replacing cos.

While the main purpose of this section Is to model and examine the motion of rays in the
E-F 2 duct. a simplified ground E-layer potential will be added on In order to have a rough
model available for launching rays from a ground transmitter. The ground E-layer potential

will thus be approximated by a simple linear potential with slope g - I/R o from V = I at
2

x = 0 to VM =-(I + aL'cRo) at the minimum x = OLand a positive slope g = g, for oL Sx < xe. The

right side of this potential will be constrained to equal the value of VCH (Xe) at x = Xe, thus, the
position of the minimum CL (J is determined by the intersection of the right and left sides of
the potential and will move lower (higher) as the value of VCH (xe) increases (decreases). The
general solution for a ray in this potential is given by

X 1 ge'2 + Vo'+ Xo (36)
x' 2  v

where

SI/R o  x'<(37)g= gr x" > 0" 37

To cast the E-F 2 potential well into the Ermakov form, the Morse potential is fit at each
range point v, by a least squares approximation. It is assumed that g, N ). g92 (), and n are zero.

At the initial range point, a and -?are determined by least squares fit with p (0) = 1. go (0) = 0
and a (0) - Xm/n. At subsequent range points, a (i). p (NJ, and go (,) are fit by minimizing

13



J [V (x"TO - y2 (._ x - O(T] /P(r,)' 1)2 (.,C)2 - go0 (.) dx (38)

where x, and xr bound the E-F 2 potential as described Reference 7.
Having determined the parameters a. 2, and the set of values for la (ft)l and 1p ( J1}, the

path for a ray launched in the E-F 2 duct at some arbitrary point (at x - x, if It arrived by
passing over the E-layer peak) will be given for all subsequent range values by Eq. (32) until it
leaves the duct, either by passing over the E-layer peak at x = xe or at an analagous point x = xf
which is taken as representing the F-layer peak. The Ermakov invariant IM determined by the
values of the quantities x. p. and 6. the potential VM [(x - a) / p] and the first derivatives

x. p. and 0 at the launch point, can then be used to determine the velocity at the exit point as

x= dx' / p +ob+ p x"(9idx'/+O' (39)
d-c'

where dx'/dt' Is related to IM by

IM = E' = (dx 2 + VM(X'). (40)

If the ray crosses over into the ground-E potential well. the new invariant

2

= _ I X ('O) - M 0 1)] * gr (41)

with rb the range at the boundary crossing, Is conserved as long as the ray propagates In the
ground E-layer potential. If we were able to treat the Ionospheric double-well potential exactly
In the Ermakov formalism, there would be only one invariant. As we have divided the
potential into sectors, there will be an Ermakov invariant connected with propagation in each

sector and crossing from one to the other will entail a new calculation of the sector Just

entered. Since p and a for the Morse potential can change independently of p (- 1) and a for the
ground E-layer potential, there is no necessity for IM (ft) to equal IM (2) if the ray has

propagated in the ground E-layer potential at some range between '2 and T1. A similar
statement holds true for 10.

14



The details of numerical fitting the Morse potential wells and plotting ray paths are

discussed in Reference 7. We note that since both the E and F2 layer peaks have been

approximated by functions that have non-parabolic slopes at x, and xf, there will be no
Pedersen high rays.

4. COHERENT STATES AND RAY PATHS FOR THE MORSE POTENTIAL

While the discussion in Section 3 was concerned with determining solutions of the

classical equations of motion for ray paths. the same time-dependent theory can be applied to

solutions of the wave [Eq. (6)1 if the operator form for the Ermakov invariants, Eq. (22) or (23)
Is used. Dhara and Lawande8 have shown that the Feyman propagator for a time-dependent

system that obeys the constraint conditions (Eq. (10) and (I l may be written as

K - 1/2 elk°(xb-x.)Ko x , "" xIT' )(2

K0 (xb b: x. ')= -(P.P) e (xb' V ' .) (42)

where K0 Is the propagator in the local potential v (x')

K. V.. X'I 43)
n, -" /' l (T) P i (T.)

and where E' are the elgenvalues of ' with
n op

x + x (6 - 0pp) - p') (a /p)2 dT'. (44)

Since

7 Yukon. S.P. (1986) Calculation of Ray Paths in the Ionosphere Using an Analytic Ray
Tracing Technique. RADC-TR-86-125, ADA178888.
8 Dhara. A.K. and Lawande. S.V. (1984) Feynman Propagators for Time Dependent
Lagranglans Possessing an Invariant Quadratic in Momentum. J. Phys. A- 17:2423.
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(Xb' ) = dx KO (Xb' b;Xa T) 'V (x. a . (45)

The propagator of Eq. (43) projects the wave function y (x.. T.) into a sum of 'local'

elgenfunctions ((x c) ) each of which has its phase increased according to its 'local' energy

eigenvalue E' times the local time
n

,f? (T (46)

If an appropriate soluble double-well potential could be found that would model the
Ionospheric potential (F1 layer neglected), then the above propagator would convey all of the
information necessary for mapping and for wave propagation. Since it is extremely difficult
to find a soluble double-well potential that can model a time-path-dependent ionosphere, a
practical measure is to piece together truncated soluble single-well potentials as outlined in
Section 3 The resulting total wave function can be approximated by appropriate super-
positions of wave functions belonging to each well. If elgenfuncUons and elgenvalues can be

found for each truncated well separately, the combined potential wells may be described by the
same formalism that is used for treating coupled optical waveguldes. 9

If we can confine our attention to low lying states In each of the potential wells separately.

the details of how the potentials are truncated should not greatly affect these states. For low
lying states in the E-F 2 potential that can be described by the Morse potential [Eq. (31)1 the
elgenvalues and elgenfunctions are given by1°

E = EO[2 n + I) -(n + 121] (47)

with

9 Marcuse. D. (1974) Theory of Dielectric Optical Waveguldes. Academic Press. New York.
10 Morse. P.M. (1929) Diatomic Molecules According to the Wave Mechanics II.
Vibrational Levels, Phys. Rev.. 34:57.
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E£~ h2a2 /2 )2 _2/1E 0(48)

and

10 = N (n. X) 00 (r) (49)

[aE(2 -2fll-) r ( )j 1/2 Y(X 1/2n)ey/2 L(2X-2 n-1) (y)

with

y - 2 XCUX (50)

where IYis a generalized Laguerre polynomial.
n

4. 1 Coherent States of the Morse Potential

It has been pointed out by Schrodinger"I and subsequently by several other authors 1 2 that

for wave packets formed to minimize the position-momentum uncertainty for a harmonic

oscillator, the expectation value <x Ur)> will follow the classical motion of an harmonic

oscillator. Subsequent authors have generalized such minimum uncertainty states to coherent

states that can be defined either as eigenstates of the annihilation operator

a(p + MW X) / f2-m o (51)

I1Schrodlnger. E. (1926) Naturwlssenechaften. 14:664. English translation in Schrodlnger.
E. (1928) Collected Papers on Wave Mechanics. p. 4 1, Blackie & Son. London.

12 Nieto. M.M.. Simmons Jr.. L.M. (1979) Coherent States for General Potentialp, 1.
Formnalism. Phys. Rev.. D20: 1321.
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such that a I a > = a la >. or as a displacement by a of the ground state 0 >.
For the harmonic oscillator the two definitions are equivalent due to the special

circumstance that the oscillator frequency is independent of energy, with elgenenergies
equally spaced. For the Morse potential these conditions do not hold as can be seen from the
expression for the frequency [Eq. (35)1 which Is energy dependent and from the expression

[Eq. (47)) for En which depends on n2 .

By treating

2
X =e -  - =A(E) sin[o0C (E) t] (52)( 2 _E)

and

Pc = aPe-ax = m o (E) cos [(oc (E) r] (53)

as an appropriate pair of classical (but not canonical) variables for the problem, since their
classical equations of motion are the same as the harmonic oscillator, Nieto 12 formed
minimum-uncertainty coherent states that minimize < A X >< A Pc >. In tracing out this

subsequent time evolution of these states it was found that after a few cycles the wave packets
would tend to break up and disperse. More recently Gerry1 3 has shown that the Morse

oscillator may be treated as an harmonic oscillator evolving in a curved phase space with a

transformed time parameter

(54)

The coherent states can thus be formed as minimum uncertainty states in the transformed
harmonic oscillator representation. When projected back into original variables, < x (,r) > for

these coherent states should follow the classical path for a Morse oscillator.

13 Gerry. C.C. (1986) Coherent States and a Path Integral for the Morse Oscillator, Phys.
Rev.. A33:2207.
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4.2 Focusing Properties of the Morse Potential

It has been noted for many years 14 that underwater sound channels exist in the oceans
that can play the same role for acoustic waves as ionospheric ducts do for HF electromagnetic
waves. 15 In the underwater sound case there exists a focusing phenomenon shown in Figure 3
wherein rays launched from a source near the sound axis will be repeatedly focused as they

travel downrange In the sound channel. The regions where this quasi-focusing occurs are
called convergence zones. The sound speed profile for underwater sound channels is well-

approximated by the Munk profile' 6

c (x)-c = 2 [el-- 1],n : = x o

shown in Figure 3. Near the origin the Munk profile can be seen to be quite similar to the
Morse potential for small il. Writing the Morse potential as

v y2 (e - 2 en/2+1) (56)

and expanding only the second term to first order, that Is

-2 e / 2 -- 2- q1 (57)

yields an expression which is Identical to the Munk profile. Repeated focusing could therefore
be expected to occur in the case of ducted ionospheric propagation described by the Morse

potential.

14 Ewing. W.M.. Worzel. J.L. (1948) Long Range Sound Transmission, GeoL Soc. Am
Mer. 27. Part 11I. 1.

15 Quack. E. (1927) Propagation of Short Waves Around the Earth. Proc. IRE. 15:341. Further
references in Toman, K (1979) High-Frequency Ionospheric Ducting - A Review. Radio Science.
14:447.

Is Brekhousklkh, L and Lyzanov, Yu (1982) Fundamentals of Ocean Acoustics. Springer-

Verlag. Berlin. Heidelberg. New York. p. 118.
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Figure 3. Plot of the Munk Profile and Ray Convergence
Zones from Reference 16.

As It turns out. repeated focusing in the Morse potential can be exact, that is real point
focusing as opposed to progressively wider convergence zones. To see this we first note that to
have repeated focusing. the propagation constants f3n must satisfy

On I , x 58)

where I... is an arbitrary integer function and L is the focal length. 1 7 There exist families of

refraction index profiles that are finite at spatial infinity and have the focusing property
described by Eq. (58), for example

Vf(x)=sech 2 (A (x-xo)) where On=  k0 . (59)

For the Morse potential, which does not fit this category since VM (x) is unbounded as
x -4 + co it is still possible to satisfy the focusing condition [Eq. (58)] due to the presence of the

17 Yukon, S.P. and Bendow, B. (1980) Design of Waveguldes with Prescribed Propagation
Constants, J. OpL Soc. Am., 70:172.
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(n + 1/2)2 term in the expression for the energy elgenvalue given in Eq. (47). In order to satsify

condition Inn' = 1, On can be written as

pn p + q * n. (60)

This relation will then hold If y2 .n 2 /2 . where n 2 /2 is the magnitude of the potential well

minimum. From the ionospheric paths that so far have been fitted by the Morse potential it

appears that this condition can be met, but only for frequencies in the range of 6-10 MHz,

Since only a portion of the E-F 2 ionospheric duct can be modeled by the Morse potential,

repeated focusing cannot be expected to hold for weakly bound ducted modes, but should apply

to the tightly bound modes. From the correspondence between rays and coherent states

discussed in the previous section It Is expected that repeated focusing will thus hold for low

angle ducted rays.

It can also be seen that repeated focusing will be an invariant T ,ertv of an ionospheric

duct: if repeated focusing holds true in the local frame, a somn xhat distorted repeated focusing

will hold in the global frame. Thus. rays leaving n initial point

X= o (o) + xo "P (0o) (61)

at range xo will refocus at

X, =a (TI) + x'1 a p (TI) (62)

at range r 1. where to and cI are related by

A -L
L=J 2 (t) (63)

providing the differential constraint conditions [Eq. (10) and Eq. (11)l are satisfied. In the

global frame the focal length is a function of p (%). and the mapping of an interval a < x S b will

be displaced by a (t 1) - 0 (o) and enlarged or reduced depending on whether p (t1) is greater than

or less than p (02)
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5. RAY TRACING IN THE IONCAP IONOSPHERE

The ionospheric electron density profiles provided by the IONCAP program3 consist of E.
F 2 and an optional F, layers, Joined together by straight line segments. The parabolic layers

are described by the plasma frequency

(x) = 1o ( -)2 2Y (64)

where vo, xo, and yo are the peak plasma frequency, layer height and half width respectively

with the refractive Index E (x) = n2 (x) related to u (x) by
P

(X) -U (x)/1). (65)

The base of the E-layer is set at h1 = 90 kmn. The straight line that models the valley between

the E- and F2 - layers, starts at a point h2 where the plasma frequency is 0.8516 foe and ends at

a point h3 where the plasma frequency is 0.98 foE. This yields

h 2 = XOy Y -(.8516)2 (66)

= 120.48 km

and

h- -yo, -(. 9 8 foF/o (67)h3 '0(67-YO}(98fE/O2

The effective ionospheric potential Is that given by the sum of curvature correction term

E 2 R -2R 2(68)
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and

17 i(n (x.,) +~ (69)
E 2

where [ = cos (0). with 0 the launch angle with respect to the horizontal direction. The

resulting potential well Is shown in Figure 4. If the ionospheric potential Is thought of as two

separate wells joined at the E-layer peak as in the case of the Morse oscillator model of

Section 3. each separate well is then composed of parabolic and linear pieces, and would not be

in the class of potentials soluble by Ermakov theory since the shape of the well cannot be

expressed as a single function V [(x - c) / p].

vE (x)

-. 4 2 
-

-. 46-

-.5-

hi' h 2  h 3 ' I

0 100 200 300

HEIGHT (KM)

Figure 4. Plot of the IONCAP Effective Ionospheric
Potential VE (x) as a Function of Height x.
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If. however, the ionospheric potential is broken up into sectors as shown in Figure 5.

Ermakov theory may then be applied to each of the four potentials. The potentials in Sectors

II and IV are not what one usually tlinks of as potentials since they have no local minimum,

but they are valid potentials for Ermakov theory and have recently been shown 18 to have

coherent states that follow the classical motion. For an inverted parabola centered about x = 0
the classical solutions are

x (T) = x0 Cos (oT) + po sin (coT) (70)

forE= 1/2 (p -)_0

and

x (T) = xo) ch (wt) + pO sh (woT) (71)

for E > 0.

s Barton, G. (1986) Quantum Mechanics of the Inverted Oscillator Potential. Ann. of Phys.,

166:322.
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Figure 5. The IONCAP Potential of Figure 4 Broken
up into Sector Potential Wells I through IV.

Since uo. xo. and Yo are provided by IONCAP at each range point. a (z). and p (z) can be
found algebraically and need not be determined by the fitting procedure that was necessary for
the Morse potential. The tradeoff for not having to fit the parameters o (z). and p (z) is that
there are now more boundary crossings (three vs one for the Morse case) where the portion of
the range step that is in each sector must be determined: for example for x (z1 ) in region II and
x (z, + 1) in region IV it is necessary to find zb such that x (Zb) = h3 (zb). Determining Zb is
straightforward for the above example (complicated somewhat by the fact that the h3 boundary
is a function of range), if the ray did not reverse direction between z1 and z, + 1. If there is a
velocity reversal in this interval then three possible cases must be considered as depicted in
Figure 6 below.
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Figure 6. Three Possible Cases for Turning Point
Behavior Near a Sector Boundary.

To distinguish between them it is thus necessary to calculate the turning point.
One further situation where care must be exercised is for rays that cross very near the peak

of the nightime E-layer. The peak of the parabola representing the E-layer electron density
will, upon being added to the curvature term to form the effecUve potential. be shifted to a

lower altitude by an amount

Ie -- oE (2
2R

as well as being shifted down in magnitude by an amount
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R 2 4R2  (73)

It is possible for the potential peak to be shifted down (in altitude) so far that the effective

potential between h, and h 2 is the mapping of a topside segment of the inverted parabolic

potential and does not contain the peak. A ray that crosses from x < h I to x > h I may then

find itself on the topside region of an inverted parabolic potential even though Its energy is

negative with respect to the shifted peak. While unexpected. such behavior is easily dealt with

simply by checking whether

hi = (h I - O (0b)) / p (b) (74)

is greater than or less than zero. For h' < 0 the E layer boundary is still left of the peak in
local coordinates, while for h i > 0 the ray is on the topside of an inverted parabolic potential.

The testing to determine initial conditions occurs only for range steps where the ray

crosses a boundary. Thus given the ionospheric parameters for a given great circle path from

IONCAP. tracing rays employing Ermakov invariants essentially amounts to Joining up the

analytic solutions in each sector. The only real numerical work involved is in the calculation
of the fractional range step remainders in crossing sector boundaries. For an around-the-
world path there can be on the order of 20 complete oscillations in the EF potential well which

would require 40 numerical mlnimizaUons to determine the range step remainders. These

may be accomplished very efficiently using standard Newton's minimization methods so that

a complete round-the-world ray trace may be carried out in approximately one-half second.

An lonogram for the same path covering angles from 0O to 400 in one-half degree steps and the

even frequencies from 6 to 30 MHz takes approximately 3 minutes to calculate.

The F, layer as modeled by IONCAP may also be straightforwardly included In the ray

tracing code as a third parabolic (or linear) layer centered at the F, layer height. This will
entail the calculation of one more boundary crossing for motion between the E and F2 layers.
Since a ray may become trapped between the F 1 and F2 boundary, the same checking for one-
step ray reversals at the FI-F 2 boundary must be carried out as was done for the case of the

Ill-F 2 boundary described above. Thus an approximate 10 percent-30 percent increase in

computation time could be expected by turning on the F, layer.

Some examples of ray tracings and ionograms made using the methods outlined above are

shown in Figures 7 through 11 along with results obtained using the Jones-Stephenson

program for the same IONCAP parameters.
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Figure 7. Ray Traces Using Current Model vs Jones-Stephenson's
Program for Frequency = 16 MHz. Takeoff Angle - 7.10.
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Figre 8. Ray Traces Using Current Model vs Jones-Stephenson's'
rgrmfor Frequency = 16 MHz, Takeoff Angle - 6.70.
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Figure 9. Ray Traces Using Current Model vs Jones-Stephenson's1
Program for Frequency w 16 MHz. Takeoff Angle - 6.40.
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Figure 10. lonogram Produced Using Current Ray Tracing Model
with Transmitter Location and Time as Shown in Figure 7.
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